Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67.533
Filtrar
1.
Crit Rev Immunol ; 44(5): 15-25, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38618725

RESUMO

Chronic kidney disease (CKD) is a common disorder related to inflammatory pathways; its effective management remains limited. This study aimed to use bioinformatics analysis to find diagnostic markers that might be therapeutic targets for CKD. CKD microarray datasets were screened from the GEO database and the differentially expressed genes (DEGs) in CKD dataset GSE98603 were analyzed. Gene set variation analysis (GSVA) was used to explore the activity scores of the inflammatory pathways and samples. Algorithms such as weighted gene co-expression network analysis (WGCNA) and Lasso were used to screen CKD diagnostic markers related to inflammation. Then functional enrichment analysis of inflammation-related DEGs was performed. ROC curves were conducted to examine the diagnostic value of inflammation-related hub-genes. Lastly, quantitative real-time PCR further verified the prediction of bioinformatics. A total of 71 inflammation-related DEGs were obtained, of which 5 were hub genes. Enrichment analysis showed that these genes were significantly enriched in inflammation-related pathways (NF-κB, JAK-STAT, and MAPK signaling pathways). ROC curves showed that the 5 CKD diagnostic markers (TIGD7, ACTA2, ACTG2, MAP4K4, and HOXA11) also exhibited good diagnostic value. In addition, TIGD7, ACTA2, ACTG2, and HOXA11 expression was downregulated while MAP4K4 expression was upregulated in LPS-induced HK-2 cells. The present study identified TIGD7, ACTA2, ACTG2, MAP4K4, and HOXA11 as reliable CKD diagnostic markers, thereby providing a basis for further understanding of CKD in clinical treatments.


Assuntos
Perfilação da Expressão Gênica , Insuficiência Renal Crônica , Humanos , Aprendizado de Máquina , NF-kappa B , Inflamação/diagnóstico , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/genética , Proteínas Serina-Treonina Quinases , Peptídeos e Proteínas de Sinalização Intracelular
2.
Nat Commun ; 15(1): 3223, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622146

RESUMO

Two-component systems, consisting of a histidine kinase and a response regulator, serve signal transduction in bacteria, often regulating transcription in response to environmental stimuli. Here, we identify a tandem serine histidine kinase function for KdpD, previously described as a histidine kinase of the KdpDE two-component system, which controls production of the potassium pump KdpFABC. We show that KdpD additionally mediates an inhibitory serine phosphorylation of KdpFABC at high potassium levels, using not its C-terminal histidine kinase domain but an N-terminal atypical serine kinase domain. Sequence analysis of KdpDs from different species highlights that some KdpDs are much shorter than others. We show that, while Escherichia coli KdpD's atypical serine kinase domain responds directly to potassium levels, a shorter version from Deinococcus geothermalis is controlled by second messenger cyclic di-AMP. Our findings add to the growing functional diversity of sensor kinases while simultaneously expanding the framework for regulatory mechanisms in bacterial potassium homeostasis.


Assuntos
Proteínas de Escherichia coli , Histidina Quinase/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas Serina-Treonina Quinases , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fosforilação , Potássio/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica
3.
Proc Natl Acad Sci U S A ; 121(15): e2322135121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38568964

RESUMO

Endothelial cells (ECs) line the wall of blood vessels and regulate arterial contractility to tune regional organ blood flow and systemic pressure. Chloride (Cl-) is the most abundant anion in ECs and the Cl- sensitive With-No-Lysine (WNK) kinase is expressed in this cell type. Whether intracellular Cl- signaling and WNK kinase regulate EC function to alter arterial contractility is unclear. Here, we tested the hypothesis that intracellular Cl- signaling in ECs regulates arterial contractility and examined the signaling mechanisms involved, including the participation of WNK kinase. Our data obtained using two-photon microscopy and cell-specific inducible knockout mice indicated that acetylcholine, a prototypical vasodilator, stimulated a rapid reduction in intracellular Cl- concentration ([Cl-]i) due to the activation of TMEM16A, a Cl- channel, in ECs of resistance-size arteries. TMEM16A channel-mediated Cl- signaling activated WNK kinase, which phosphorylated its substrate proteins SPAK and OSR1 in ECs. OSR1 potentiated transient receptor potential vanilloid 4 (TRPV4) currents in a kinase-dependent manner and required a conserved binding motif located in the channel C terminus. Intracellular Ca2+ signaling was measured in four dimensions in ECs using a high-speed lightsheet microscope. WNK kinase-dependent activation of TRPV4 channels increased local intracellular Ca2+ signaling in ECs and produced vasodilation. In summary, we show that TMEM16A channel activation reduces [Cl-]i, which activates WNK kinase in ECs. WNK kinase phosphorylates OSR1 which then stimulates TRPV4 channels to produce vasodilation. Thus, TMEM16A channels regulate intracellular Cl- signaling and WNK kinase activity in ECs to control arterial contractility.


Assuntos
Cloretos , Proteínas Serina-Treonina Quinases , Camundongos , Animais , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Cloretos/metabolismo , Células Endoteliais/metabolismo , Canais de Cátion TRPV/metabolismo , Transdução de Sinais/fisiologia
4.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38612623

RESUMO

Posttranslational modifications (PTMs), particularly phosphorylation, play a pivotal role in expanding the complexity of the proteome and regulating diverse cellular processes. In this study, we present an efficient Escherichia coli phosphorylation system designed to streamline the evaluation of potential substrates for Arabidopsis thaliana plant kinases, although the technology is amenable to any. The methodology involves the use of IPTG-inducible vectors for co-expressing kinases and substrates, eliminating the need for radioactive isotopes and prior protein purification. We validated the system's efficacy by assessing the phosphorylation of well-established substrates of the plant kinase SnRK1, including the rat ACETYL-COA CARBOXYLASE 1 (ACC1) and FYVE1/FREE1 proteins. The results demonstrated the specificity and reliability of the system in studying kinase-substrate interactions. Furthermore, we applied the system to investigate the phosphorylation cascade involving the A. thaliana MKK3-MPK2 kinase module. The activation of MPK2 by MKK3 was demonstrated to phosphorylate the Myelin Basic Protein (MBP), confirming the system's ability to unravel sequential enzymatic steps in phosphorylation cascades. Overall, this E. coli phosphorylation system offers a rapid, cost-effective, and reliable approach for screening potential kinase substrates, presenting a valuable tool to complement the current portfolio of molecular techniques for advancing our understanding of kinase functions and their roles in cellular signaling pathways.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Animais , Ratos , Fosforilação , Escherichia coli/genética , Reprodutibilidade dos Testes , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases , Proteínas de Transporte Vesicular
5.
Int J Mol Sci ; 25(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38612866

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is highly malignant, with a 5-year survival rate of less than 10%. Furthermore, the acquisition of anticancer drug resistance makes PDAC treatment difficult. We established MIA-GEM cells, a PDAC cell line resistant to gemcitabine (GEM), a first-line anticancer drug, using the human PDAC cell line-MIA-PaCa-2. Microtubule-associated serine/threonine kinase-4 (MAST4) expression was increased in MIA-GEM cells compared with the parent cell line. Through inhibitor screening, dysregulated AKT signaling was identified in MIA-GEM cells with overexpression of AKT3. MAST4 knockdown effectively suppressed AKT3 overexpression, and both MAST4 and AKT3 translocation into the nucleus, phosphorylating forkhead box O3a (FOXO3) in MIA-GEM cells. Modulating FOXO3 target gene expression in these cells inhibited apoptosis while promoting stemness and proliferation. Notably, nuclear MAST4 demonstrated higher expression in GEM-resistant PDAC cases compared with that in the GEM-sensitive cases. Elevated MAST4 expression correlated with a poorer prognosis in PDAC. Consequently, nuclear MAST4 emerges as a potential marker for GEM resistance and poor prognosis, representing a novel therapeutic target for PDAC.


Assuntos
Antineoplásicos , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Resistencia a Medicamentos Antineoplásicos/genética , Microtúbulos , Gencitabina , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Proteína Forkhead Box O3/genética , Proteínas Proto-Oncogênicas c-akt , Proteínas Associadas aos Microtúbulos , Proteínas Serina-Treonina Quinases
6.
Cells ; 13(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38607015

RESUMO

Blood cells in Drosophila serve primarily innate immune responses. Various stressors influence blood cell homeostasis regarding both numbers and the proportion of blood cell types. The principle molecular mechanisms governing hematopoiesis are conserved amongst species and involve major signaling pathways like Notch, Toll, JNK, JAK/Stat or RTK. Albeit signaling pathways generally rely on the activity of protein kinases, their specific contribution to hematopoiesis remains understudied. Here, we assess the role of Serine/Threonine kinases with the potential to phosphorylate the transcription factor Su(H) in crystal cell homeostasis. Su(H) is central to Notch signal transduction, and its inhibition by phosphorylation impedes crystal cell formation. Overall, nearly twenty percent of all Drosophila Serine/Threonine kinases were studied in two assays, global and hemocyte-specific overexpression and downregulation, respectively. Unexpectedly, the majority of kinases influenced crystal cell numbers, albeit only a few were related to hematopoiesis so far. Four kinases appeared essential for crystal cell formation, whereas most kinases restrained crystal cell development. This group comprises all kinase classes, indicative of the complex regulatory network underlying blood cell homeostasis. The rather indiscriminative response we observed opens the possibility that blood cells measure their overall phospho-status as a proxy for stress-signals, and activate an adaptive immune response accordingly.


Assuntos
Proteínas de Drosophila , Proteínas Serina-Treonina Quinases , Animais , Proteínas Serina-Treonina Quinases/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Células Sanguíneas/metabolismo , Homeostase , Serina/metabolismo , Treonina/metabolismo
7.
Zhongguo Zhong Yao Za Zhi ; 49(3): 744-753, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621878

RESUMO

This study observed the protective effect of resveratrol(Res) on ovarian function in poor ovarian response(POR) mice by regulating the Hippo signaling pathway and explored the potential mechanism of Res in inhibiting ovarian cell apoptosis. Female mice with regular estrous cycles were randomly divided into a blank group, a model group, and low-and high-dose Res groups(20 and 40 mg·kg~(-1)), with 20 mice in each group. The blank group received an equal volume of 0.9% saline solution by gavage, while the model group and Res groups received suspension of glycosides of Triptergium wilfordii(GTW) at 50 mg·kg~(-1) by gavage for two weeks to induce the model. After modeling, the low-and high-dose Res groups were continuously treated with drugs by gavage for two weeks, while the blank group and the model group received an equal volume of 0.9% saline solution by gavage. Ovulation was induced in all groups on the day following the end of treatment. Finally, 12 female mice were randomly selected from each group, and the remaining eight female mice were co-housed with male mice at a ratio of 1∶1. Changes in the estrous cycle of mice were observed using vaginal cytology smears. The number of ovulated eggs, ovarian wet weight, ovarian index, and pregnancy rate of mice were measured. The le-vels of anti-Mullerian hormone(AMH), follicle-stimulating hormone(FSH), estradiol(E_2), and luteinizing hormone(LH) in serum were determined using enzyme-linked immunosorbent assay(ELISA). Ovarian tissue morphology and ovarian cell apoptosis were observed using hematoxylin-eosin(HE) staining and terminal deoxynucleotidyl transferase dUTP nick end labeling(TUNEL) staining, respectively. The protein expression levels of yes-associated protein(YAP) 1 and transcriptional coactivator with PDZ-binding motif(TAZ) were detected by immunohistochemistry(IHC), while the changes in protein expression levels of mammalian sterile 20-like kinase(MST) 1/2, large tumor suppressor(LATS) 1/2, YAP1, TAZ, B-cell lymphoma-2(Bcl-2), and Bcl-2 associated X protein(Bax) were determined by Western blot. The results showed that compared with the blank group, the model group had an increased rate of estrous cycle disruption in mice, a decreased number of normally developing ovarian follicles, an increased number of blocked ovarian follicles, increased ovarian granulosa cell apoptosis, decreased ovulation, reduced ovarian wet weight and ovarian index, increased serum FSH and LH levels, decreased AMH and E_2 levels, decreased protein expression levels of YAP1 and TAZ in ovarian tissues, increased relative expression levels of MST1/2, LATS1/2, and Bax proteins, and decreased relative expression levels of YAP1, TAZ, and Bcl-2 proteins. Additionally, the number of embryos per litter significantly decreased after co-housing. Compared with the model group, the low-and high-dose Res groups exhibited reduced estrous cycle disruption rates in mice, varying degrees of improvement in the number and morphology of ovarian follicles, reduced numbers of blocked ovarian follicles, improved ovarian granulosa cell apoptosis, increased ovulation, elevated ovarian wet weight and ovarian index, decreased serum FSH and LH levels, increased AMH and E_2 levels, elevated protein expression levels of YAP1 and TAZ in ovarian tissues, decreased relative expression levels of MST1/2, LATS1/2, and Bax proteins, and increased relative expression levels of YAP1, TAZ, and Bcl-2 proteins. Furthermore, the number of embryos per litter increased to varying degrees after co-housing. In conclusion, Res effectively inhibits ovarian cell apoptosis in mice and improves ovarian responsiveness. Its mechanism may be related to the regulation of key molecules in the Hippo pathway.


Assuntos
Via de Sinalização Hippo , Ovário , Gravidez , Camundongos , Feminino , Masculino , Animais , Proteína X Associada a bcl-2/metabolismo , Resveratrol/farmacologia , Solução Salina/metabolismo , Solução Salina/farmacologia , Hormônio Foliculoestimulante/metabolismo , Hormônio Foliculoestimulante/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Mamíferos/metabolismo
8.
Cell Stem Cell ; 31(4): 554-569.e17, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38579685

RESUMO

The YAP/Hippo pathway is an organ growth and size regulation rheostat safeguarding multiple tissue stem cell compartments. LATS kinases phosphorylate and thereby inactivate YAP, thus representing a potential direct drug target for promoting tissue regeneration. Here, we report the identification and characterization of the selective small-molecule LATS kinase inhibitor NIBR-LTSi. NIBR-LTSi activates YAP signaling, shows good oral bioavailability, and expands organoids derived from several mouse and human tissues. In tissue stem cells, NIBR-LTSi promotes proliferation, maintains stemness, and blocks differentiation in vitro and in vivo. NIBR-LTSi accelerates liver regeneration following extended hepatectomy in mice. However, increased proliferation and cell dedifferentiation in multiple organs prevent prolonged systemic LATS inhibition, thus limiting potential therapeutic benefit. Together, we report a selective LATS kinase inhibitor agonizing YAP signaling and promoting tissue regeneration in vitro and in vivo, enabling future research on the regenerative potential of the YAP/Hippo pathway.


Assuntos
Inibidores de Proteínas Quinases , Proteínas Serina-Treonina Quinases , Proteínas de Sinalização YAP , Animais , Humanos , Camundongos , Proliferação de Células , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Células-Tronco/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAP/agonistas , Proteínas de Sinalização YAP/efeitos dos fármacos , Proteínas de Sinalização YAP/metabolismo , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia
9.
Commun Biol ; 7(1): 402, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565675

RESUMO

Focal segmental glomerulosclerosis (FSGS) shares podocyte damage as an essential pathological finding. Several mechanisms underlying podocyte injury have been proposed, but many important questions remain. Rho-associated, coiled-coil-containing protein kinase 2 (ROCK2) is a serine/threonine kinase responsible for a wide array of cellular functions. We found that ROCK2 is activated in podocytes of adriamycin (ADR)-induced FSGS mice and cultured podocytes stimulated with ADR. Conditional knockout mice in which the ROCK2 gene was selectively disrupted in podocytes (PR2KO) were resistant to albuminuria, glomerular sclerosis, and podocyte damage induced by ADR injection. In addition, pharmacological intervention for ROCK2 significantly ameliorated podocyte loss and kidney sclerosis in a murine model of FSGS by abrogating profibrotic factors. RNA sequencing of podocytes treated with a ROCK2 inhibitor proved that ROCK2 is a cyclic nucleotide signaling pathway regulator. Our study highlights the potential utility of ROCK2 inhibition as a therapeutic option for FSGS.


Assuntos
Glomerulosclerose Segmentar e Focal , Podócitos , Animais , Camundongos , Doxorrubicina/farmacologia , Glomerulosclerose Segmentar e Focal/genética , Glomerulosclerose Segmentar e Focal/prevenção & controle , Camundongos Knockout , Podócitos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Esclerose/metabolismo , Esclerose/patologia
10.
Cell Death Dis ; 15(4): 240, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561354

RESUMO

Abnormal lipid metabolism and lipid accumulation are characteristic hallmarks of renal cell carcinoma (RCC). While there is prior evidence closely linking such lipid accumulation within RCC cells and consequent tumorigenesis, the mechanisms underlying this process remain incompletely understood. In this study, a series of bioinformatics analyses were initially performed by screening RCC databases and gene sets, ultimately leading to the identification of TRIB3 as an oncogene that functions as a central regulator of lipid metabolism. TRIB3 overexpression was observed in both RCC patient tumor tissues and cell lines, and this upregulation was correlated with a worse RCC patient prognosis. When TRIB3 was knocked down, this resulted in a reduction in lipid accumulation and the consequent induction of endoplasmic reticulum (ER) stress-related apoptotic cell death. At the molecular level, interactions between TRIB3 and PLIN2 were found to abrogate TEB4-mediated PLIN2 ubiquitination and consequent degradation, thus maintaining higher PLIN2 expression levels. This simultaneously helps facilitate the accumulation of lipids while preserving ER homeostasis, thus driving accelerated RCC tumor progression. This TRIB3-PLIN2 axis thus represents a promising new target for efforts to treat RCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Humanos , Carcinoma de Células Renais/metabolismo , Gotículas Lipídicas/metabolismo , Estresse do Retículo Endoplasmático/genética , Neoplasias Renais/metabolismo , Lipídeos , Proteínas Repressoras/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Perilipina-2/genética , Perilipina-2/metabolismo
11.
Commun Biol ; 7(1): 396, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561411

RESUMO

Myocardial ischemia-reperfusion injury (MIRI) is involved in the pathogenesis of multiple cardiovascular diseases. This study elucidated the biological function of lysine acetyltransferase 5 (KAT5) in cardiomyocyte pyroptosis during MIRI. Oxygen-glucose deprivation/reoxygenation and left anterior descending coronary artery ligation were used to establish MIRI models. Here we show, KAT5 and STIP1 homology and U-box-containing protein 1 (STUB1) were downregulated, while large tumor suppressor kinase 2 (LATS2) was upregulated in MIRI models. KAT5/STUB1 overexpression or LATS2 silencing repressed cardiomyocyte pyroptosis. Mechanistically, KAT5 promoted STUB1 transcription via acetylation modulation, and subsequently caused ubiquitination and degradation of LATS2, which activated YAP/ß-catenin pathway. Notably, the inhibitory effect of STUB1 overexpression on cardiomyocyte pyroptosis was abolished by LATS2 overexpression or KAT5 depletion. Our findings suggest that KAT5 overexpression inhibits NLRP3-mediated cardiomyocyte pyroptosis to relieve MIRI through modulation of STUB1/LATS2/YAP/ß-catenin axis, providing a potential therapeutic target for MIRI.


Assuntos
Traumatismo por Reperfusão Miocárdica , beta Catenina , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Piroptose , Ubiquitinação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Lisina Acetiltransferase 5/metabolismo
12.
Sci Rep ; 14(1): 8246, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589525

RESUMO

MicroRNAs are small RNA molecules that have a significant role in translational repression and gene silencing through binding to downstream target mRNAs. MiR-762 can stimulate the proliferation and metastasis of various types of cancer. Hippo pathway is one of the pathways that regulate tissue development and carcinogenesis. Dysregulation of this pathway plays a vital role in the progression of cancer. This study aimed to evaluate the possible correlation between miR-762, the Hippo signaling pathway, TWIST1, and SMAD3 in patients with lung cancer, as well as patients with chronic inflammatory diseases. The relative expression of miR-762, MST1, LATS2, YAP, TWIST1, and SMAD3 was determined in 50 lung cancer patients, 30 patients with chronic inflammatory diseases, and 20 healthy volunteers by real-time PCR. The levels of YAP protein and neuron-specific enolase were estimated by ELISA and electrochemiluminescence immunoassay, respectively. Compared to the control group, miR-762, YAP, TWIST1, and SMAD3 expression were significantly upregulated in lung cancer patients and chronic inflammatory patients, except SMAD3 was significantly downregulated in chronic inflammatory patients. MST1, LATS2, and YAP protein were significantly downregulated in all patients. MiR-762 has a significant negative correlation with MST1, LATS2, and YAP protein in lung cancer patients and with MST1 and LATS2 in chronic inflammatory patients. MiR-762 may be involved in the induction of malignant behaviors in lung cancer through suppression of the Hippo pathway. MiR-762, MST1, LATS2, YAP mRNA and protein, TWIST1, and SMAD3 may be effective diagnostic biomarkers in both lung cancer patients and chronic inflammatory patients. High YAP, TWIST1, SMA3 expression, and NSE level are associated with a favorable prognosis for lung cancer.


Assuntos
Neoplasias Pulmonares , MicroRNAs , Humanos , Via de Sinalização Hippo , Transdução de Sinais , Neoplasias Pulmonares/genética , Linhagem Celular Tumoral , MicroRNAs/genética , MicroRNAs/metabolismo , Doença Crônica , Proliferação de Células/genética , Proteína Smad3/genética , Proteína Smad3/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteína 1 Relacionada a Twist/genética , Proteína 1 Relacionada a Twist/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
13.
Sci Rep ; 14(1): 8200, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589728

RESUMO

Breast cancer (BC) is a leading cause of global cancer-related mortality in women, necessitating accurate tumor classification for timely intervention. Molecular and histological factors, including PAM50 classification, estrogen receptor α (ERα), breast cancer type 1 susceptibility protein (BRCA1), progesterone receptor (PR), and HER2 expression, contribute to intricate BC subtyping. In this work, through a combination of bioinformatic and wet lab screenings, followed by classical signal transduction and cell proliferation methods, and employing multiple BC cell lines, we identified enhanced sensitivity of ERα-positive BC cell lines to ALK and MELK inhibitors, inducing ERα degradation and diminishing proliferation in specific BC subtypes. MELK inhibition attenuated ERα transcriptional activity, impeding E2-induced gene expression, and hampering proliferation in MCF-7 cells. Synergies between MELK inhibition with 4OH-tamoxifen (Tam) and ALK inhibition with HER2 inhibitors revealed potential therapeutic avenues for ERα-positive/PR-positive/HER2-negative and ERα-positive/PR-negative/HER2-positive tumors, respectively. Our findings propose MELK as a promising target for ERα-positive/PR-positive/HER2-negative BC and highlight ALK as a potential focus for ERα-positive/PR-negative/HER2-positive BC. The synergistic anti-proliferative effects of MELK with Tam and ALK with HER2 inhibitors underscore kinase inhibitors' potential for selective treatment in diverse BC subtypes, paving the way for personalized and effective therapeutic strategies in BC management.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Resistencia a Medicamentos Antineoplásicos , Tamoxifeno/farmacologia , Tamoxifeno/uso terapêutico , Proliferação de Células , Células MCF-7 , Fenótipo , Receptores Proteína Tirosina Quinases/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proteínas Serina-Treonina Quinases/metabolismo
14.
J Vet Sci ; 25(2): e21, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38568823

RESUMO

BACKGROUND: Peste des petits ruminants (PPR) is a contagious and fatal disease of sheep and goats. PPR virus (PPRV) infection induces endoplasmic reticulum (ER) stress-mediated unfolded protein response (UPR). The activation of UPR signaling pathways and their impact on apoptosis and virus replication remains controversial. OBJECTIVES: To investigate the role of PPRV-induced ER stress and the IRE1-XBP1 and IRE1-JNK pathways and their impact on apoptosis and virus replication. METHODS: The cell viability and virus replication were assessed by 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay, immunofluorescence assay, and Western blot. The expression of ER stress biomarker GRP78, IRE1, and its downstream molecules, PPRV-N protein, and apoptosis-related proteins was detected by Western blot and quantitative reverse transcription-polymerase chain reaction, respectively. 4-Phenylbutyric acid (4-PBA) and STF-083010 were respectively used to inhibit ER stress and IRE1 signaling pathway. RESULTS: The expression of GRP78, IRE1α, p-IRE1α, XBP1s, JNK, p-JNK, caspase-3, caspase-9, Bax and PPRV-N were significantly up-regulated in PPRV-infected cells, the expression of Bcl-2 was significantly down-regulated. Due to 4-PBA treatment, the expression of GRP78, p-IRE1α, XBP1s, p-JNK, caspase-3, caspase-9, Bax, and PPRV-N were significantly down-regulated, the expression of Bcl-2 was significantly up-regulated. Moreover, in PPRV-infected cells, the expression of p-IRE1α, p-JNK, Bax, and PPRV-N was significantly decreased, and the expression of Bcl-2 was increased in the presence of STF-083010. CONCLUSIONS: PPRV infection induces ER stress and IRE1 activation, resulting in apoptosis and enhancement of virus replication through IRE1-XBP1s and IRE1-JNK pathways.


Assuntos
Butilaminas , Doenças das Cabras , Peste dos Pequenos Ruminantes , Vírus da Peste dos Pequenos Ruminantes , Doenças dos Ovinos , Sulfonamidas , Tiofenos , Ovinos , Animais , Sistema de Sinalização das MAP Quinases , Caspase 3/metabolismo , Caspase 9/metabolismo , Chaperona BiP do Retículo Endoplasmático , Endorribonucleases/metabolismo , Proteína X Associada a bcl-2/metabolismo , Proteínas Serina-Treonina Quinases , Cabras/metabolismo , Apoptose , Estresse do Retículo Endoplasmático
15.
J Med Chem ; 67(7): 5617-5641, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38563549

RESUMO

NIK plays a crucial role in the noncanonical NF-κB signaling pathway associated with diverse inflammatory and autoimmune diseases. Our study presents compound 54, a novel NIK inhibitor, designed through a structure-based scaffold-hopping approach from the previously identified B022. Compound 54 demonstrates remarkable selectivity and potency against NIK both in vitro and in vivo, effectively suppressing pro-inflammatory cytokines and nitric oxide production. In mouse models, compound 54 protected against LPS-induced systemic sepsis, reducing AST, ALT, and AKP liver injury markers. Additionally, it also attenuates sepsis-induced lung and kidney damage. Mechanistically, compound 54 blocks the noncanonical NF-κB signaling pathway by targeting NIK, preventing p100 to p52 processing. This work reveals a novel class of NIK inhibitors with significant potential for sepsis therapy.


Assuntos
Proteínas Serina-Treonina Quinases , Sepse , Animais , Camundongos , Proteínas Serina-Treonina Quinases/metabolismo , NF-kappa B/metabolismo , 60643 , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Sepse/induzido quimicamente , Sepse/tratamento farmacológico
16.
J Med Chem ; 67(7): 5437-5457, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38564512

RESUMO

The mitogen-activated protein kinase-interacting protein kinases (MNKs) are the only kinases known to phosphorylate eukaryotic translation initiation factor 4E (eIF4E) at Ser209, which plays a significant role in cap-dependent translation. Dysregulation of the MNK/eIF4E axis has been found in various solid tumors and hematological malignancies, including diffuse large B-cell lymphoma (DLBCL). Herein, structure-activity relationship studies and docking models determined that 20j exhibits excellent MNK1/2 inhibitory activity, stability, and hERG safety. 20j exhibits strong and broad antiproliferative activity against different cancer cell lines, especially GCB-DLBCL DOHH2. 20j suppresses the phosphorylation of eIF4E in Hela cells (IC50 = 90.5 nM) and downregulates the phosphorylation of eIF4E and 4E-BP1 in A549 cells. In vivo studies first revealed that ibrutinib enhances the antitumor effect of 20j without side effects in a DOHH2 xenograft model. This study provided a solid foundation for the future development of a MNK inhibitor for GCB-DLBCL treatment.


Assuntos
Linfoma , Proteínas Serina-Treonina Quinases , Humanos , Fator de Iniciação 4E em Eucariotos/metabolismo , Células HeLa , Fosforilação , Linfoma/tratamento farmacológico
17.
J Cell Biol ; 223(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38578284

RESUMO

During mitosis, the Bub1-Bub3 complex concentrates at kinetochores, the microtubule-coupling interfaces on chromosomes, where it contributes to spindle checkpoint activation, kinetochore-spindle microtubule interactions, and protection of centromeric cohesion. Bub1 has a conserved N-terminal tetratricopeptide repeat (TPR) domain followed by a binding motif for its conserved interactor Bub3. The current model for Bub1-Bub3 localization to kinetochores is that Bub3, along with its bound motif from Bub1, recognizes phosphorylated "MELT" motifs in the kinetochore scaffold protein Knl1. Motivated by the greater phenotypic severity of BUB-1 versus BUB-3 loss in C. elegans, we show that the BUB-1 TPR domain directly recognizes a distinct class of phosphorylated motifs in KNL-1 and that this interaction is essential for BUB-1-BUB-3 localization and function. BUB-3 recognition of phospho-MELT motifs additively contributes to drive super-stoichiometric accumulation of BUB-1-BUB-3 on its KNL-1 scaffold during mitotic entry. Bub1's TPR domain interacts with Knl1 in other species, suggesting that collaboration of TPR-dependent and Bub3-dependent interfaces in Bub1-Bub3 localization and functions may be conserved.


Assuntos
Proteínas de Caenorhabditis elegans , Proteínas de Ciclo Celular , Cinetocoros , Proteínas Associadas aos Microtúbulos , Proteínas Serina-Treonina Quinases , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Pontos de Checagem do Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cinetocoros/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Fuso Acromático/metabolismo , Repetições de Tetratricopeptídeos , Proteínas Serina-Treonina Quinases/metabolismo
18.
Biochem Biophys Res Commun ; 710: 149871, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38579538

RESUMO

Brassinosteroid activated kinase 1 (BAK1) is a cell-surface coreceptor which plays multiple roles in innate immunity of plants. HopF2 is an effector secreted by the bacterial pathogen Pseudomonas syringae pv. tomato DC3000 into Arabidopsis and suppresses host immune system through interaction with BAK1 as well as its downstream kinase MKK5. The association mechanism of HopF2 to BAK1 remains unclear, which prohibits our understanding and subsequent interfering of their interaction for pathogen management. Herein, we found the kinase domain of BAK1 (BAK1-KD) is sufficient for HopF2 association. With a combination of hydrogen/deuterium exchange mass spectrometry and mutational assays, we found a region of BAK1-KD N-lobe and a region of HopF2 head subdomain are critical for intermolecular interaction, which is also supported by unbiased protein-protein docking with ClusPro and kinase activity assay. Collectively, this research presents the interaction mechanism between Arabidopsis BAK1 and P. syringae HopF2, which could pave the way for bactericide development that blocking the functioning of HopF2 toward BAK1.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Pseudomonas syringae/fisiologia , Brassinosteroides , Proteínas de Bactérias/química , Proteínas de Arabidopsis/fisiologia , Doenças das Plantas/microbiologia , Proteínas Serina-Treonina Quinases/química
19.
Cell Mol Life Sci ; 81(1): 179, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602536

RESUMO

Extracellular vesicles (EVs) have recently received increasing attention as essential mediators of communication between tumor cells and their microenvironments. Tumor-associated macrophages (TAMs) play a proangiogenic role in various tumors, especially head and neck squamous cell carcinoma (HNSCC), and angiogenesis is closely related to tumor growth and metastasis. This research focused on exploring the mechanisms by which EVs derived from TAMs modulate tumor angiogenesis in HNSCC. Our results indicated that TAMs infiltration correlated positively with microvascular density in HNSCC. Then we collected and identified EVs from TAMs. In the microfluidic chip, TAMs derived EVs significantly enhanced the angiogenic potential of pHUVECs and successfully induced the formation of perfusable blood vessels. qPCR and immunofluorescence analyses revealed that EVs from TAMs transferred miR-21-5p to endothelial cells (ECs). And targeting miR-21-5p of TAMs could effectively inhibit TAM-EVs induced angiogenesis. Western blot and tube formation assays showed that miR-21-5p from TAM-EVs downregulated LATS1 and VHL levels but upregulated YAP1 and HIF-1α levels, and the inhibitors of YAP1 and HIF-1α could both reduce the miR-21-5p enhanced angiogenesis in HUVECs. The in vivo experiments further proved that miR-21-5p carried by TAM-EVs promoted the process of tumor angiogenesis via YAP1/HIF-1α axis in HNSCC. Conclusively, TAM-derived EVs transferred miR-21-5p to ECs to target the mRNA of LATS1 and VHL, which inhibited YAP1 phosphorylation and subsequently enhanced YAP1-mediated HIF-1α transcription and reduced VHL-mediated HIF-1α ubiquitination, contributing to angiogenesis in HNSCC. These findings present a novel regulatory mechanism of tumor angiogenesis, and miR-21-5p/YAP1/HIF-1α might be a potential therapeutic target for HNSCC.


Assuntos
Exossomos , Neoplasias de Cabeça e Pescoço , MicroRNAs , Carcinoma de Células Escamosas de Cabeça e Pescoço , Microambiente Tumoral , Humanos , 60489 , Células Endoteliais , Neoplasias de Cabeça e Pescoço/genética , MicroRNAs/genética , Proteínas Serina-Treonina Quinases , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Macrófagos Associados a Tumor , Exossomos/metabolismo , Animais , Camundongos
20.
Sci Rep ; 14(1): 8597, 2024 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615119

RESUMO

Oral poisoning can trigger diverse physiological reactions, determined by the toxic substance involved. One such consequence is hyperchloremia, characterized by an elevated level of chloride in the blood and leads to kidney damage and impairing chloride ion regulation. Here, we conducted a comprehensive genome-wide analysis to investigate genes or proteins linked to hyperchloremia. Our analysis included functional enrichment, protein-protein interactions, gene expression, exploration of molecular pathways, and the identification of potential shared genetic factors contributing to the development of hyperchloremia. Functional enrichment analysis revealed that oral poisoning owing hyperchloremia is associated with 4 proteins e.g. Kelch-like protein 3, Serine/threonine-protein kinase WNK4, Serine/threonine-protein kinase WNK1 and Cullin-3. The protein-protein interaction network revealed Cullin-3 as an exceptional protein, displaying a maximum connection of 18 nodes. Insufficient data from transcriptomic analysis indicates that there are lack of information having direct associations between these proteins and human-related functions to oral poisoning, hyperchloremia, or metabolic acidosis. The metabolic pathway of Cullin-3 protein revealed that the derivative is Sulfonamide which play role in, increasing urine output, and metabolic acidosis resulted in hypertension. Based on molecular docking results analysis it found that Cullin-3 proteins has the lowest binding energies score and being suitable proteins. Moreover, no major variations were observed in unbound Cullin-3 and all three peptide bound complexes shows that all systems remain compact during 50 ns simulations. The results of our study revealed Cullin-3 proteins be a strong foundation for the development of potential drug targets or biomarker for future studies.


Assuntos
Cloretos , Proteínas Culina , Humanos , Acidose , Biomarcadores , Cloretos/efeitos adversos , Cloretos/toxicidade , Proteínas Culina/metabolismo , Halogênios , Simulação de Acoplamento Molecular , Proteínas Serina-Treonina Quinases/metabolismo , Proteína Quinase 1 Deficiente de Lisina WNK/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...